Interakce elektromagnetického záření s látkou

Z ωικι.matfyz.cz
Přejít na: navigace, hledání

Úvod[editovat | editovat zdroj]

  • odezvu krystalu na elmag.pole popisuje dielektrická fce (permitivita) $ \epsilon (\omega, vec{k}) $- závisí na elektronové struktuře krystalu -> pásová struktura

Elektromagnetické vlny[editovat | editovat zdroj]

  • elmag.vlny poprové postulovány Maxwellem(a potvrzeny Hertzem) - odvodil vlnovou formu elektrických a magnetických vln
  • dle Maxwellek prosotorově měnící el.pole generuje časově proměnné pole magnetické a naopak - tyto oscilující pole dohromady vytváří elektromagnetickou vlnu
  • elektromagnetická vlna dopadající na látku (atomovou strukturu) -> oscilace atomů -> emitují své vlastní vlny -> difrakce a odraz (viz.dynamická a kinematická teorie difrakce)
  • elektromagnetické spektrum: viditelné je $ 4- 7,9.10^{14} Hz \sim 400-790 nm \sim 1,6 - 3,3 eV $

Maxwellovy rovnice[editovat | editovat zdroj]

První Maxwellova rovnice (zákon celkového proudu, zobecněný Ampérův zákon

$ \nabla \times \mathbf{H}=\mathbf{j}+\frac{\partial \mathbf{D}}{\partial t}. $

Druhá Maxwellova rovnice (Zákon elektromagnetické indukce, Faradayův indukční zákon)

$ \nabla \times \mathbf{E}=- \frac{\partial \mathbf{B}}{\partial t}. $

Třetí Maxwellova rovnice (Gaussův zákon elektrostatiky)

$ \nabla \cdot \mathbf{D}= \rho. $

Čtvrtá Maxwellova rovnice (Zákon spojitosti indukčního toku)

$ \nabla \cdot \mathbf{B}=0. $

Materiálové vztahy pro materiály s lineární závislostí

$ \mathbf{P} = \chi_e \varepsilon_0 \mathbf{E} $
$ \mathbf{M} = \chi_m \mathbf{H} $

a že pole D a B jsou s E a H provázány vztahy:

$ \mathbf{D} \ \ = \ \ \varepsilon_0 \mathbf{E} + \mathbf{P} \ \ = \ \ (1 + \chi_e) \varepsilon_0 \mathbf{E} \ \ = \ \ \varepsilon \mathbf{E} $
$ \mathbf{B} \ \ = \ \ \mu_0 ( \mathbf{H} + \mathbf{M} ) \ \ = \ \ (1 + \chi_m) \mu_0 \mathbf{H} \ \ = \ \ \mu \mathbf{H}, $

Odvození vlnové rovnice[editovat | editovat zdroj]

Z druhé Maxwellovy rovnice dostáváme: $ \nabla \times (\nabla \times \mathbf{E})=\nabla \times \left( - \frac{\partial \mathbf{B}}{\partial t} \right) $

Po vyjádření pravé a levé strany získáme:

$ \nabla \times (\nabla \times \mathbf{E})=\nabla \left( \nabla . \mathbf{E} \right) - \nabla^2 \mathbf{E}= - \Delta \mathbf{E} $

$ \nabla \times \left( - \frac{\partial \mathbf{B}}{\partial t} \right)= - \frac{\partial}{\partial t} \left(\nabla \times \mathbf{B} \right) = - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} $

Nyní již můžeme dát oba výrazy dohromady a získáme rovnici:

$ \Delta \mathbf{E} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} $

$ \Delta \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} $

což je ekvivalentní vlnové rovnici: $ \Delta \mathbf{A} = \frac {1}{c_0^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} $ kde $ c_0 = \frac{1}{\sqrt{\mu_0 \epsilon_0}} $

Popis elektromagnetické vlny[editovat | editovat zdroj]

Vezmeme-li v úvahu další 2 Maxwellovy rovnice, tak zjistíme pro vlnu elektromagnetického pole (která je ve tvaru rovinné vlny $ \mathbf{E}=E_0 e^{i(\vec{k}\vec{r}-\omega t)} $), že se pohybuje stejně jako vlna magnetická rychlostí světla a obě se pohybují kolmo na sebe $ \mathbf{B}= \frac{1}{c_0} \mathbf{k} \times \mathbf{E} $ a jejich vln.vektory mají proporcionální amplitudy: $ E_0=c_0 B_0 $

  • vlna se pohybuje ve směru $ \mathbf{E} \times \mathbf{B} $ (Poyntingův vektor)

Interakce[editovat | editovat zdroj]

Fotoefekt[editovat | editovat zdroj]

  • fotoelektron detekován vždy, když je látka ozářena světlem o frekvenci $ \nu $ větší než jistá hraniční frekvence
  • závisí jen na frekvenci ($ \omega $) a ne na intenzitě -> kvantování fotonů
  • záření excituje e- a ten při návratu do základního stavu vyzáří záření o dané frekvenci = rtg.fluorescence
  • molekuly lze díky fotoefektu zkoumat metodami EXAFS a XANES (více v kinematické teorii difrakce), další metody využívající fotoefekt: XPS (více ve Spektroskopických metodách)

$ E_{e^-}=h\nu - BE $ (BE=binding energy of shell X)

Comptonův rozptyl[editovat | editovat zdroj]

  • =neelastický rozptyl - v kvantové t. vždy neelasticky - rozptyl e- nižší E (větší $ \lambda $)

$ \lambda^{(2)}-\lambda^{(1)}=\frac{h}{mc}(1-cos \Theta) $

$ \frac {h}{mc} $ se nazývá Comptonova vlnová délka a je cca 0,00234nm

Produkce párů[editovat | editovat zdroj]

  • vysokoenergetický foton interaguje s jádrem za vzniku páru e- a e+
  • pro ZZE a ZZH musí být foton něčím absorbován (jádrem či jiným fotonem), nelze ve volném prostoru

$ h \nu = 2mc^2 + T_+ + T_- $

Fotonukleární reakce[editovat | editovat zdroj]

  • velmi energetické $ \gamma $ dopadne na jádro -> jádro do excitovaného stavu -> rozpad s vypuštěním částice (opak jaderné fúze, supernovy)

$ D+\gamma=H+n^0 $

-dále lze mluvit i o kinematické teorii difrakce

Zpět na seznam společných požadavků